Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 29
Filter
1.
Front Cardiovasc Med ; 10: 1191953, 2023.
Article in English | MEDLINE | ID: covidwho-2313794
2.
JACC Cardiovasc Imaging ; 16(5): 609-624, 2023 05.
Article in English | MEDLINE | ID: covidwho-2320177

ABSTRACT

BACKGROUND: Myocardial injury in patients with COVID-19 and suspected cardiac involvement is not well understood. OBJECTIVES: The purpose of this study was to characterize myocardial injury in a multicenter cohort of patients with COVID-19 and suspected cardiac involvement referred for cardiac magnetic resonance (CMR). METHODS: This retrospective study consisted of 1,047 patients from 18 international sites with polymerase chain reaction-confirmed COVID-19 infection who underwent CMR. Myocardial injury was characterized as acute myocarditis, nonacute/nonischemic, acute ischemic, and nonacute/ischemic patterns on CMR. RESULTS: In this cohort, 20.9% of patients had nonischemic injury patterns (acute myocarditis: 7.9%; nonacute/nonischemic: 13.0%), and 6.7% of patients had ischemic injury patterns (acute ischemic: 1.9%; nonacute/ischemic: 4.8%). In a univariate analysis, variables associated with acute myocarditis patterns included chest discomfort (OR: 2.00; 95% CI: 1.17-3.40, P = 0.01), abnormal electrocardiogram (ECG) (OR: 1.90; 95% CI: 1.12-3.23; P = 0.02), natriuretic peptide elevation (OR: 2.99; 95% CI: 1.60-5.58; P = 0.0006), and troponin elevation (OR: 4.21; 95% CI: 2.41-7.36; P < 0.0001). Variables associated with acute ischemic patterns included chest discomfort (OR: 3.14; 95% CI: 1.04-9.49; P = 0.04), abnormal ECG (OR: 4.06; 95% CI: 1.10-14.92; P = 0.04), known coronary disease (OR: 33.30; 95% CI: 4.04-274.53; P = 0.001), hospitalization (OR: 4.98; 95% CI: 1.55-16.05; P = 0.007), natriuretic peptide elevation (OR: 4.19; 95% CI: 1.30-13.51; P = 0.02), and troponin elevation (OR: 25.27; 95% CI: 5.55-115.03; P < 0.0001). In a multivariate analysis, troponin elevation was strongly associated with acute myocarditis patterns (OR: 4.98; 95% CI: 1.76-14.05; P = 0.003). CONCLUSIONS: In this multicenter study of patients with COVID-19 with clinical suspicion for cardiac involvement referred for CMR, nonischemic and ischemic patterns were frequent when cardiac symptoms, ECG abnormalities, and cardiac biomarker elevations were present.


Subject(s)
COVID-19 , Coronary Artery Disease , Heart Injuries , Myocarditis , Humans , Myocarditis/pathology , COVID-19/complications , Retrospective Studies , Predictive Value of Tests , Magnetic Resonance Imaging , Troponin , Magnetic Resonance Spectroscopy
3.
Lancet Reg Health Eur ; 29: 100635, 2023 Jun.
Article in English | MEDLINE | ID: covidwho-2311846

ABSTRACT

Background: The risk factors for recovery from COVID-19 dyspnoea are poorly understood. We investigated determinants of recovery from dyspnoea in adults with COVID-19 and compared these to determinants of recovery from non-COVID-19 dyspnoea. Methods: We used data from two prospective cohort studies: PHOSP-COVID (patients hospitalised between March 2020 and April 2021 with COVID-19) and COVIDENCE UK (community cohort studied over the same time period). PHOSP-COVID data were collected during hospitalisation and at 5-month and 1-year follow-up visits. COVIDENCE UK data were obtained through baseline and monthly online questionnaires. Dyspnoea was measured in both cohorts with the Medical Research Council Dyspnoea Scale. We used multivariable logistic regression to identify determinants associated with a reduction in dyspnoea between 5-month and 1-year follow-up. Findings: We included 990 PHOSP-COVID and 3309 COVIDENCE UK participants. We observed higher odds of improvement between 5-month and 1-year follow-up among PHOSP-COVID participants who were younger (odds ratio 1.02 per year, 95% CI 1.01-1.03), male (1.54, 1.16-2.04), neither obese nor severely obese (1.82, 1.06-3.13 and 4.19, 2.14-8.19, respectively), had no pre-existing anxiety or depression (1.56, 1.09-2.22) or cardiovascular disease (1.33, 1.00-1.79), and shorter hospital admission (1.01 per day, 1.00-1.02). Similar associations were found in those recovering from non-COVID-19 dyspnoea, excluding age (and length of hospital admission). Interpretation: Factors associated with dyspnoea recovery at 1-year post-discharge among patients hospitalised with COVID-19 were similar to those among community controls without COVID-19. Funding: PHOSP-COVID is supported by a grant from the MRC-UK Research and Innovation and the Department of Health and Social Care through the National Institute for Health Research (NIHR) rapid response panel to tackle COVID-19. The views expressed in the publication are those of the author(s) and not necessarily those of the National Health Service (NHS), the NIHR or the Department of Health and Social Care.COVIDENCE UK is supported by the UK Research and Innovation, the National Institute for Health Research, and Barts Charity. The views expressed are those of the authors and not necessarily those of the funders.

4.
Kompass Pneumologie ; 11(2):60-71, 2023.
Article in German | EuropePMC | ID: covidwho-2291591

ABSTRACT

Long COVID, die lang anhaltende Krankheit und Erschöpfung, die bei einem kleinen Teil der SARS-CoV-2-Infizierten auftritt, stellt eine zunehmende Belastung für die Betroffenen und die Gesellschaft dar. Eine virtuelle Tagung der Physiological Society im Februar 2022 brachte Kliniker und Forscher zusammen, um das aktuelle Verständnis der Mechanismen, Risikofaktoren und Genesung nach Long COVID zu erörtern. In dieser Übersichtsarbeit werden die Themen behandelt, die sich aus dieser Tagung ergeben haben. Die Übersichtsarbeit befasst sich mit der Natur von Long COVID, untersucht den Zusammenhang mit anderen postviralen Erkrankungen wie der myalgischen Enzephalomyelitis/dem chronischen Erschöpfungssyndrom und zeigt auf, wie die Forschung zu Long COVID helfen kann, Patienten mit allen möglichen postviralen Syndromen besser zu unterstützen. Die Forschung zu Long COVID hat besonders rasche Fortschritte bei Bevölkerungsgruppen gemacht, die ihre körperliche Leistungsfähigkeit routinemäßig überwachen, insbesondere beim Militär und bei Leistungssportlern. In der Übersichtsarbeit wird hervorgehoben, inwiefern das hohe Niveau von Diagnose, Intervention und Erfolgskontrolle in diesen aktiven Bevölkerungsgruppen Informationen über Managementstrategien für die Allgemeinbevölkerung liefern kann. Anschließend wird untersucht, wie eine Schlüsselkomponente der Leistungsüberwachung bei diesen aktiven Bevölkerungsgruppen, das kardiopulmonale Training, Long-COVID-bedingte Veränderungen in der Physiologie aufdeckt − einschließlich Veränderungen der peripheren Muskelfunktion, der ventilatorischen Ineffizienz und der autonomen Dysfunktion. Das Wesen und die Auswirkungen der Dysautonomie werden im Zusammenhang mit dem posturalen orthostatischen Tachykardiesyndrom, der Fatigue und den Behandlungsstrategien, die darauf abzielen, der Überaktivierung des Sympathikus durch Stimulation des Vagusnervs entgegenzuwirken, erörtert. Anschließend untersuchen wir die Mechanismen, die den Symptomen von Long COVID zugrunde liegen. Dabei konzentrieren wir uns auf die gestörte Sauerstoffversorgung durch Mikrokoagulation und die Störung des zellulären Energiestoffwechsels, bevor wir Behandlungsstrategien betrachten, die direkt oder indirekt auf diese Mechanismen abzielen. Dazu gehören ein fernbetreutes Atemmuskeltraining und integrierte Versorgungspfade, die Rehabilitation und medikamentöse Interventionen mit der Erforschung des Zugangs zur Long-COVID-Versorgung in verschiedenen Bevölkerungsgruppen kombinieren. Insgesamt zeigt diese Übersichtsarbeit, wie im Rahmen der physiologischen Forschung die bei Long COVID auftretenden Veränderungen aufgedeckt werden und wie verschiedene therapeutische Strategien zur Bekämpfung dieser Erkrankung entwickelt und getestet werden.

5.
EClinicalMedicine ; 2023.
Article in English | EuropePMC | ID: covidwho-2295059

ABSTRACT

Background ‘Long COVID' describes persistent symptoms, commonly fatigue, lasting beyond 12 weeks following SARS-CoV-2 infection. Potential causes include reduced mitochondrial function and cellular bioenergetics. AXA1125 has previously increased β-oxidation and improved bioenergetics in preclinical models along with certain clinical conditions, and therefore may reduce fatigue associated with Long COVID. We aimed to assess the efficacy, safety and tolerability of AXA1125 in Long COVID. Methods Patients with fatigue dominant Long COVID were recruited in this single-centre, double-blind, randomised controlled phase 2a pilot study completed in the UK. Patients were randomly assigned (1:1) using an Interactive Response Technology to receive either AXA1125 or matching placebo in a clinical based setting. Each dose (33.9 g) of AXA1125 or placebo was administered orally in a liquid suspension twice daily for four weeks with a two week follow-up period. The primary endpoint was the mean change from baseline to day 28 in the phosphocreatine (PCr) recovery rate following moderate exercise, assessed by 31P-magnetic resonance spectroscopy (MRS). All patients were included in the intention to treat analysis. This trial was registered at ClinicalTrials.gov, NCT05152849. Findings Between December 15th 2021, and May 23th 2022, 60 participants were screened and 41 participants were randomised and included in the final analysis. Changes in skeletal muscle phosphocreatine recovery time constant (τPCr) and 6-min walk test (6MWT) did not significantly differ between treatment (n = 21) and placebo group (n = 20). However, treatment with AXA1125 was associated with significantly reduced day 28 Chalder Fatigue Questionnaire [CFQ-11] fatigue score when compared with placebo (least squares mean difference [LSMD] −4.30, 95% confidence interval (95% CI) −7.14, −1.47;P = 0.0039). Eleven (52.4%, AXA1125) and four (20.0%, placebo) patients reported treatment-emergent adverse events;none were serious, or led to treatment discontinuation. Interpretation Although treatment with AXA1125 did not improve the primary endpoint (τPCr-measure of mitochondrial respiration), when compared to placebo, there was a significant improvement in fatigue-based symptoms among patients living with Long COVID following a four week treatment period. Further multicentre studies are needed to validate our findings in a larger cohort of patients with fatigue-dominant Long COVID. Funding Axcella Therapeutics.

6.
Lancet Respir Med ; 2023 Apr 14.
Article in English | MEDLINE | ID: covidwho-2297008

ABSTRACT

BACKGROUND: Sleep disturbance is common following hospital admission both for COVID-19 and other causes. The clinical associations of this for recovery after hospital admission are poorly understood despite sleep disturbance contributing to morbidity in other scenarios. We aimed to investigate the prevalence and nature of sleep disturbance after discharge following hospital admission for COVID-19 and to assess whether this was associated with dyspnoea. METHODS: CircCOVID was a prospective multicentre cohort substudy designed to investigate the effects of circadian disruption and sleep disturbance on recovery after COVID-19 in a cohort of participants aged 18 years or older, admitted to hospital for COVID-19 in the UK, and discharged between March, 2020, and October, 2021. Participants were recruited from the Post-hospitalisation COVID-19 study (PHOSP-COVID). Follow-up data were collected at two timepoints: an early time point 2-7 months after hospital discharge and a later time point 10-14 months after hospital discharge. Sleep quality was assessed subjectively using the Pittsburgh Sleep Quality Index questionnaire and a numerical rating scale. Sleep quality was also assessed with an accelerometer worn on the wrist (actigraphy) for 14 days. Participants were also clinically phenotyped, including assessment of symptoms (ie, anxiety [Generalised Anxiety Disorder 7-item scale questionnaire], muscle function [SARC-F questionnaire], dyspnoea [Dyspnoea-12 questionnaire] and measurement of lung function), at the early timepoint after discharge. Actigraphy results were also compared to a matched UK Biobank cohort (non-hospitalised individuals and recently hospitalised individuals). Multivariable linear regression was used to define associations of sleep disturbance with the primary outcome of breathlessness and the other clinical symptoms. PHOSP-COVID is registered on the ISRCTN Registry (ISRCTN10980107). FINDINGS: 2320 of 2468 participants in the PHOSP-COVID study attended an early timepoint research visit a median of 5 months (IQR 4-6) following discharge from 83 hospitals in the UK. Data for sleep quality were assessed by subjective measures (the Pittsburgh Sleep Quality Index questionnaire and the numerical rating scale) for 638 participants at the early time point. Sleep quality was also assessed using device-based measures (actigraphy) a median of 7 months (IQR 5-8 months) after discharge from hospital for 729 participants. After discharge from hospital, the majority (396 [62%] of 638) of participants who had been admitted to hospital for COVID-19 reported poor sleep quality in response to the Pittsburgh Sleep Quality Index questionnaire. A comparable proportion (338 [53%] of 638) of participants felt their sleep quality had deteriorated following discharge after COVID-19 admission, as assessed by the numerical rating scale. Device-based measurements were compared to an age-matched, sex-matched, BMI-matched, and time from discharge-matched UK Biobank cohort who had recently been admitted to hospital. Compared to the recently hospitalised matched UK Biobank cohort, participants in our study slept on average 65 min (95% CI 59 to 71) longer, had a lower sleep regularity index (-19%; 95% CI -20 to -16), and a lower sleep efficiency (3·83 percentage points; 95% CI 3·40 to 4·26). Similar results were obtained when comparisons were made with the non-hospitalised UK Biobank cohort. Overall sleep quality (unadjusted effect estimate 3·94; 95% CI 2·78 to 5·10), deterioration in sleep quality following hospital admission (3·00; 1·82 to 4·28), and sleep regularity (4·38; 2·10 to 6·65) were associated with higher dyspnoea scores. Poor sleep quality, deterioration in sleep quality, and sleep regularity were also associated with impaired lung function, as assessed by forced vital capacity. Depending on the sleep metric, anxiety mediated 18-39% of the effect of sleep disturbance on dyspnoea, while muscle weakness mediated 27-41% of this effect. INTERPRETATION: Sleep disturbance following hospital admission for COVID-19 is associated with dyspnoea, anxiety, and muscle weakness. Due to the association with multiple symptoms, targeting sleep disturbance might be beneficial in treating the post-COVID-19 condition. FUNDING: UK Research and Innovation, National Institute for Health Research, and Engineering and Physical Sciences Research Council.

8.
ERJ Open Res ; 9(1)2023 Jan.
Article in English | MEDLINE | ID: covidwho-2256122

ABSTRACT

Background: Persistence of respiratory symptoms, particularly breathlessness, after acute coronavirus disease 2019 (COVID-19) infection has emerged as a significant clinical problem. We aimed to characterise and identify risk factors for patients with persistent breathlessness following COVID-19 hospitalisation. Methods: PHOSP-COVID is a multicentre prospective cohort study of UK adults hospitalised for COVID-19. Clinical data were collected during hospitalisation and at a follow-up visit. Breathlessness was measured by a numeric rating scale of 0-10. We defined post-COVID-19 breathlessness as an increase in score of ≥1 compared to the pre-COVID-19 level. Multivariable logistic regression was used to identify risk factors and to develop a prediction model for post-COVID-19 breathlessness. Results: We included 1226 participants (37% female, median age 59 years, 22% mechanically ventilated). At a median 5 months after discharge, 50% reported post-COVID-19 breathlessness. Risk factors for post-COVID-19 breathlessness were socioeconomic deprivation (adjusted OR 1.67, 95% CI 1.14-2.44), pre-existing depression/anxiety (adjusted OR 1.58, 95% CI 1.06-2.35), female sex (adjusted OR 1.56, 95% CI 1.21-2.00) and admission duration (adjusted OR 1.01, 95% CI 1.00-1.02). Black ethnicity (adjusted OR 0.56, 95% CI 0.35-0.89) and older age groups (adjusted OR 0.31, 95% CI 0.14-0.66) were less likely to report post-COVID-19 breathlessness. Post-COVID-19 breathlessness was associated with worse performance on the shuttle walk test and forced vital capacity, but not with obstructive airflow limitation. The prediction model had fair discrimination (concordance statistic 0.66, 95% CI 0.63-0.69) and good calibration (calibration slope 1.00, 95% CI 0.80-1.21). Conclusions: Post-COVID-19 breathlessness was commonly reported in this national cohort of patients hospitalised for COVID-19 and is likely to be a multifactorial problem with physical and emotional components.

9.
Front Cardiovasc Med ; 10: 1097974, 2023.
Article in English | MEDLINE | ID: covidwho-2280843

ABSTRACT

Background: Patients with a history of COVID-19 infection are reported to have cardiac abnormalities on cardiovascular magnetic resonance (CMR) during convalescence. However, it is unclear whether these abnormalities were present during the acute COVID-19 illness and how they may evolve over time. Methods: We prospectively recruited unvaccinated patients hospitalized with acute COVID-19 (n = 23), and compared them with matched outpatient controls without COVID-19 (n = 19) between May 2020 and May 2021. Only those without a past history of cardiac disease were recruited. We performed in-hospital CMR at a median of 3 days (IQR 1-7 days) after admission, and assessed cardiac function, edema and necrosis/fibrosis, using left and right ventricular ejection fraction (LVEF, RVEF), T1-mapping, T2 signal intensity ratio (T2SI), late gadolinium enhancement (LGE) and extracellular volume (ECV). Acute COVID-19 patients were invited for follow-up CMR and blood tests at 6 months. Results: The two cohorts were well matched in baseline clinical characteristics. Both had normal LVEF (62 ± 7 vs. 65 ± 6%), RVEF (60 ± 6 vs. 58 ± 6%), ECV (31 ± 3 vs. 31 ± 4%), and similar frequency of LGE abnormalities (16 vs. 14%; all p > 0.05). However, measures of acute myocardial edema (T1 and T2SI) were significantly higher in patients with acute COVID-19 when compared to controls (T1 = 1,217 ± 41 ms vs. 1,183 ± 22 ms; p = 0.002; T2SI = 1.48 ± 0.36 vs. 1.13 ± 0.09; p < 0.001). All COVID-19 patients who returned for follow up (n = 12) at 6 months had normal biventricular function, T1 and T2SI. Conclusion: Unvaccinated patients hospitalized for acute COVID-19 demonstrated CMR imaging evidence of acute myocardial edema, which normalized at 6 months, while biventricular function and scar burden were similar when compared to controls. Acute COVID-19 appears to induce acute myocardial edema in some patients, which resolves in convalescence, without significant impact on biventricular structure and function in the acute and short-term. Further studies with larger numbers are needed to confirm these findings.

10.
Front Med (Lausanne) ; 10: 1056506, 2023.
Article in English | MEDLINE | ID: covidwho-2271816

ABSTRACT

Background and aim: In acute severe COVID-19, patients present with lung inflammation and vascular injury, accompanied by an exaggerated cytokine response. In this study, our aim was to describe the inflammatory and vascular mediator profiles in patients who were previously hospitalized with COVID-19 pneumonitis, months after their recovery, and compare them with those in patients recovering from severe sepsis and in healthy controls. Methods: A total of 27 different cytokine, chemokine, vascular endothelial injury and angiogenic mediators were measured in the plasma of forty-nine patients 5.0 ± 1.9 (mean ± SD) months after they were hospitalized with COVID-19 pneumonia, eleven patients 5.4 ± 2.9 months after hospitalization with acute severe sepsis, and 18 healthy controls. Results: Compared with healthy controls, IL-6, TNFα, SAA, CRP, Tie-2, Flt1, and PIGF were significantly increased in the post-COVID group, and IL-7 and bFGF were significantly reduced. While IL-6, PIGF, and CRP were also significantly elevated in post-Sepsis patients compared to controls, the observed differences in TNFα, Tie-2, Flt-1, IL-7 and bFGF were unique to the post-COVID group. TNFα levels significantly correlated with the severity of acute COVID-19 illness (spearman's r = 0.30, p < 0.05). Furthermore, in post-COVID patients, IL-6 and CRP were each strongly negatively correlated with gas transfer factor %predicted (spearman's r = -0.51 and r = -0.57, respectively, p < 0.002) and positively correlated with computed tomography (CT) abnormality scores at recovery (r = 0.28 and r = 0.46, p < 0.05, respectively). Conclusion: A unique inflammatory and vascular endothelial damage mediator signature is found in plasma months following acute COVID-19 infection. Further research is required to determine its pathophysiological and clinical significance.

11.
EClinicalMedicine ; 57: 101896, 2023 Mar.
Article in English | MEDLINE | ID: covidwho-2271485

ABSTRACT

Background: The scale of COVID-19 and its well documented long-term sequelae support a need to understand long-term outcomes including frailty. Methods: This prospective cohort study recruited adults who had survived hospitalisation with clinically diagnosed COVID-19 across 35 sites in the UK (PHOSP-COVID). The burden of frailty was objectively measured using Fried's Frailty Phenotype (FFP). The primary outcome was the prevalence of each FFP group-robust (no FFP criteria), pre-frail (one or two FFP criteria) and frail (three or more FFP criteria)-at 5 months and 1 year after discharge from hospital. For inclusion in the primary analysis, participants required complete outcome data for three of the five FFP criteria. Longitudinal changes across frailty domains are reported at 5 months and 1 year post-hospitalisation, along with risk factors for frailty status. Patient-perceived recovery and health-related quality of life (HRQoL) were retrospectively rated for pre-COVID-19 and prospectively rated at the 5 month and 1 year visits. This study is registered with ISRCTN, number ISRCTN10980107. Findings: Between March 5, 2020, and March 31, 2021, 2419 participants were enrolled with FFP data. Mean age was 57.9 (SD 12.6) years, 933 (38.6%) were female, and 429 (17.7%) had received invasive mechanical ventilation. 1785 had measures at both timepoints, of which 240 (13.4%), 1138 (63.8%) and 407 (22.8%) were frail, pre-frail and robust, respectively, at 5 months compared with 123 (6.9%), 1046 (58.6%) and 616 (34.5%) at 1 year. Factors associated with pre-frailty or frailty were invasive mechanical ventilation, older age, female sex, and greater social deprivation. Frail participants had a larger reduction in HRQoL compared with before their COVID-19 illness and were less likely to describe themselves as recovered. Interpretation: Physical frailty and pre-frailty are common following hospitalisation with COVID-19. Improvement in frailty was seen between 5 and 12 months although two-thirds of the population remained pre-frail or frail. This suggests comprehensive assessment and interventions targeting pre-frailty and frailty beyond the initial illness are required. Funding: UK Research and Innovation and National Institute for Health Research.

12.
Exp Physiol ; 2022 Nov 22.
Article in English | MEDLINE | ID: covidwho-2227711

ABSTRACT

NEW FINDINGS: What is the topic of this review? The emerging condition of long COVID, its epidemiology, pathophysiological impacts on patients of different backgrounds, physiological mechanisms emerging as explanations of the condition, and treatment strategies being trialled. The review leads from a Physiological Society online conference on this topic. What advances does it highlight? Progress in understanding the pathophysiology and cellular mechanisms underlying Long COVID and potential therapeutic and management strategies. ABSTRACT: Long COVID, the prolonged illness and fatigue suffered by a small proportion of those infected with SARS-CoV-2, is placing an increasing burden on individuals and society. A Physiological Society virtual meeting in February 2022 brought clinicians and researchers together to discuss the current understanding of long COVID mechanisms, risk factors and recovery. This review highlights the themes arising from that meeting. It considers the nature of long COVID, exploring its links with other post-viral illnesses such as myalgic encephalomyelitis/chronic fatigue syndrome, and highlights how long COVID research can help us better support those suffering from all post-viral syndromes. Long COVID research started particularly swiftly in populations routinely monitoring their physical performance - namely the military and elite athletes. The review highlights how the high degree of diagnosis, intervention and monitoring of success in these active populations can suggest management strategies for the wider population. We then consider how a key component of performance monitoring in active populations, cardiopulmonary exercise training, has revealed long COVID-related changes in physiology - including alterations in peripheral muscle function, ventilatory inefficiency and autonomic dysfunction. The nature and impact of dysautonomia are further discussed in relation to postural orthostatic tachycardia syndrome, fatigue and treatment strategies that aim to combat sympathetic overactivation by stimulating the vagus nerve. We then interrogate the mechanisms that underlie long COVID symptoms, with a focus on impaired oxygen delivery due to micro-clotting and disruption of cellular energy metabolism, before considering treatment strategies that indirectly or directly tackle these mechanisms. These include remote inspiratory muscle training and integrated care pathways that combine rehabilitation and drug interventions with research into long COVID healthcare access across different populations. Overall, this review showcases how physiological research reveals the changes that occur in long COVID and how different therapeutic strategies are being developed and tested to combat this condition.

13.
EBioMedicine ; 87: 104402, 2023 Jan.
Article in English | MEDLINE | ID: covidwho-2178115

ABSTRACT

BACKGROUND: Most studies of immunity to SARS-CoV-2 focus on circulating antibody, giving limited insights into mucosal defences that prevent viral replication and onward transmission. We studied nasal and plasma antibody responses one year after hospitalisation for COVID-19, including a period when SARS-CoV-2 vaccination was introduced. METHODS: In this follow up study, plasma and nasosorption samples were prospectively collected from 446 adults hospitalised for COVID-19 between February 2020 and March 2021 via the ISARIC4C and PHOSP-COVID consortia. IgA and IgG responses to NP and S of ancestral SARS-CoV-2, Delta and Omicron (BA.1) variants were measured by electrochemiluminescence and compared with plasma neutralisation data. FINDINGS: Strong and consistent nasal anti-NP and anti-S IgA responses were demonstrated, which remained elevated for nine months (p < 0.0001). Nasal and plasma anti-S IgG remained elevated for at least 12 months (p < 0.0001) with plasma neutralising titres that were raised against all variants compared to controls (p < 0.0001). Of 323 with complete data, 307 were vaccinated between 6 and 12 months; coinciding with rises in nasal and plasma IgA and IgG anti-S titres for all SARS-CoV-2 variants, although the change in nasal IgA was minimal (1.46-fold change after 10 months, p = 0.011) and the median remained below the positive threshold determined by pre-pandemic controls. Samples 12 months after admission showed no association between nasal IgA and plasma IgG anti-S responses (R = 0.05, p = 0.18), indicating that nasal IgA responses are distinct from those in plasma and minimally boosted by vaccination. INTERPRETATION: The decline in nasal IgA responses 9 months after infection and minimal impact of subsequent vaccination may explain the lack of long-lasting nasal defence against reinfection and the limited effects of vaccination on transmission. These findings highlight the need to develop vaccines that enhance nasal immunity. FUNDING: This study has been supported by ISARIC4C and PHOSP-COVID consortia. ISARIC4C is supported by grants from the National Institute for Health and Care Research and the Medical Research Council. Liverpool Experimental Cancer Medicine Centre provided infrastructure support for this research. The PHOSP-COVD study is jointly funded by UK Research and Innovation and National Institute of Health and Care Research. The funders were not involved in the study design, interpretation of data or the writing of this manuscript.


Subject(s)
COVID-19 , SARS-CoV-2 , Adult , Humans , COVID-19/prevention & control , COVID-19 Vaccines , Follow-Up Studies , Vaccination , Hospitalization , Immunoglobulin A , Immunoglobulin G , Antibodies, Viral , Antibodies, Neutralizing
14.
ERJ open research ; 2022.
Article in English | EuropePMC | ID: covidwho-2168013

ABSTRACT

Background Persistence of respiratory symptoms—particularly breathlessness—after acute COVID-19 infection has emerged as a significant clinical problem. We aimed to characterise and identify risk factors for patients with persistent breathlessness following COVID-19 hospitalisation. Methods PHOSP-COVID is a multi-centre prospective cohort study of UK adults hospitalised for COVID-19. Clinical data were collected during hospitalisation and at a follow-up visit. Breathlessness was measured by a numeric rating scale of 0–10. We defined post-COVID breathlessness as an increase in score of 1 or more compared to the pre-COVID-19 level. Multivariable logistic regression was used to identify risk factors, and to develop a prediction model for post-COVID breathlessness. Results We included 1226 participants (37% female, median age 59 years, 22% mechanically ventilated). At a median five months after discharge, 50% reported post-COVID breathlessness. Risk factors for post-COVID breathlessness were socio-economic deprivation (adjusted odds ratio, 1.67;95% confidence interval, 1.14–2.44), pre-existing depression/anxiety (1.58;1.06–2.35), female sex (1.56;1.21–2.00) and admission duration (1.01;1.00–1.02). Black ethnicity (0.56;0.35–0.89) and older age groups (0.31;0.14–0.66) were less likely to report post-COVID breathlessness. Post-COVID breathlessness was associated with worse performance on the shuttle walk test and forced vital capacity, but not with obstructive airflow limitation. The prediction model had fair discrimination (concordance-statistic 0.66;0.63–0.69), and good calibration (calibration slope 1.00;0.80–1.21). Conclusions Post-COVID breathlessness was commonly reported in this national cohort of patients hospitalised for COVID-19 and is likely to be a multifactorial problem with physical and emotional components.

15.
Radiology ; 305(3): 709-717, 2022 Dec.
Article in English | MEDLINE | ID: covidwho-2138184

ABSTRACT

Background Post-COVID-19 condition encompasses symptoms following COVID-19 infection that linger at least 4 weeks after the end of active infection. Symptoms are wide ranging, but breathlessness is common. Purpose To determine if the previously described lung abnormalities seen on hyperpolarized (HP) pulmonary xenon 129 (129Xe) MRI scans in participants with post-COVID-19 condition who were hospitalized are also present in participants with post-COVID-19 condition who were not hospitalized. Materials and Methods In this prospective study, nonhospitalized participants with post-COVID-19 condition (NHLC) and posthospitalized participants with post-COVID-19 condition (PHC) were enrolled from June 2020 to August 2021. Participants underwent chest CT, HP 129Xe MRI, pulmonary function testing, and the 1-minute sit-to-stand test and completed breathlessness questionnaires. Control subjects underwent HP 129Xe MRI only. CT scans were analyzed for post-COVID-19 interstitial lung disease severity using a previously published scoring system and full-scale airway network (FAN) modeling. Analysis used group and pairwise comparisons between participants and control subjects and correlations between participant clinical and imaging data. Results A total of 11 NHLC participants (four men, seven women; mean age, 44 years ± 11 [SD]; 95% CI: 37, 50) and 12 PHC participants (10 men, two women; mean age, 58 years ±10; 95% CI: 52, 64) were included, with a significant difference in age between groups (P = .05). Mean time from infection was 287 days ± 79 (95% CI: 240, 334) and 143 days ± 72 (95% CI: 105, 190) in NHLC and PHC participants, respectively. NHLC and PHC participants had normal or near normal CT scans (mean, 0.3/25 ± 0.6 [95% CI: 0, 0.63] and 7/25 ± 5 [95% CI: 4, 10], respectively). Gas transfer (Dlco) was different between NHLC and PHC participants (mean Dlco, 76% ± 8 [95% CI: 73, 83] vs 86% ± 8 [95% CI: 80, 91], respectively; P = .04), but there was no evidence of other differences in lung function. Mean red blood cell-to-tissue plasma ratio was different between volunteers (mean, 0.45 ± 0.07; 95% CI: 0.43, 0.47]) and PHC participants (mean, 0.31 ± 0.10; 95% CI: 0.24, 0.37; P = .02) and between volunteers and NHLC participants (mean, 0.37 ± 0.10; 95% CI: 0.31, 0.44; P = .03) but not between NHLC and PHC participants (P = .26). FAN results did not correlate with Dlco) or HP 129Xe MRI results. Conclusion Nonhospitalized participants with post-COVID-19 condition (NHLC) and posthospitalized participants with post-COVID-19 condition (PHC) showed hyperpolarized pulmonary xenon 129 MRI and red blood cell-to-tissue plasma abnormalities, with NHLC participants demonstrating lower gas transfer than PHC participants despite having normal CT findings. © RSNA, 2022 Online supplemental material is available for this article. See also the editorial by Parraga and Matheson in this issue.


Subject(s)
COVID-19 , Xenon Isotopes , Male , Humans , Female , Adult , Middle Aged , COVID-19/diagnostic imaging , Prospective Studies , Magnetic Resonance Imaging/methods , Lung/diagnostic imaging , Dyspnea , Post-Acute COVID-19 Syndrome
16.
J Appl Physiol (1985) ; 133(5): 1175-1191, 2022 11 01.
Article in English | MEDLINE | ID: covidwho-2108366

ABSTRACT

The longer-term effects of COVID-19 on lung physiology remain poorly understood. Here, a new technique, computed cardiopulmonography (CCP), was used to study two COVID-19 cohorts (MCOVID and C-MORE-LP) at both ∼6 and ∼12 mo after infection. CCP is comprised of two components. The first is collection of highly precise, highly time-resolved measurements of gas exchange with a purpose-built molecular flow sensor based around laser absorption spectroscopy. The second component is estimation of physiological parameters by fitting a cardiopulmonary model to the data set. The measurement protocol involved 7 min of breathing air followed by 5 min of breathing pure O2. One hundred seventy-eight participants were studied, with 97 returning for a repeat assessment. One hundred twenty-six arterial blood gas samples were drawn from MCOVID participants. For participants who had required intensive care and/or invasive mechanical ventilation, there was a significant increase in anatomical dead space of ∼30 mL and a significant increase in alveolar-to-arterial Po2 gradient of ∼0.9 kPa relative to control participants. Those who had been hospitalized had reductions in functional residual capacity of ∼15%. Irrespectively of COVID-19 severity, participants who had had COVID-19 demonstrated a modest increase in ventilation inhomogeneity, broadly equivalent to that associated with 15 yr of aging. This study illustrates the capability of CCP to study aspects of lung function not so easily addressed through standard clinical lung function tests. However, without measurements before infection, it is not possible to conclude whether the findings relate to the effects of COVID-19 or whether they constitute risk factors for more serious disease.NEW & NOTEWORTHY This study used a novel technique, computed cardiopulmonography, to study the lungs of patients who have had COVID-19. Depending on severity of infection, there were increases in anatomical dead space, reductions in absolute lung volumes, and increases in ventilation inhomogeneity broadly equivalent to those associated with 15 yr of aging. However, without measurements taken before infection, it is unclear whether the changes result from COVID-19 infection or are risk factors for more severe disease.


Subject(s)
COVID-19 , Humans , Respiratory Function Tests , Respiration, Artificial , Lung , Respiration
17.
Heart ; 2022 Oct 24.
Article in English | MEDLINE | ID: covidwho-2088826

ABSTRACT

OBJECTIVE: To examine association of COVID-19 with incident cardiovascular events in 17 871 UK Biobank cases between March 2020 and 2021. METHODS: COVID-19 cases were defined using health record linkage. Each case was propensity score-matched to two uninfected controls on age, sex, deprivation, body mass index, ethnicity, diabetes, prevalent ischaemic heart disease (IHD), smoking, hypertension and high cholesterol. We included the following incident outcomes: myocardial infarction, stroke, heart failure, atrial fibrillation, venous thromboembolism (VTE), pericarditis, all-cause death, cardiovascular death, IHD death. Cox proportional hazards regression was used to estimate associations of COVID-19 with each outcome over an average of 141 days (range 32-395) of prospective follow-up. RESULTS: Non-hospitalised cases (n=14 304) had increased risk of incident VTE (HR 2.74 (95% CI 1.38 to 5.45), p=0.004) and death (HR 10.23 (95% CI 7.63 to 13.70), p<0.0001). Individuals with primary COVID-19 hospitalisation (n=2701) had increased risk of all outcomes considered. The largest effect sizes were with VTE (HR 27.6 (95% CI 14.5 to 52.3); p<0.0001), heart failure (HR 21.6 (95% CI 10.9 to 42.9); p<0.0001) and stroke (HR 17.5 (95% CI 5.26 to 57.9); p<0.0001). Those hospitalised with COVID-19 as a secondary diagnosis (n=866) had similarly increased cardiovascular risk. The associated risks were greatest in the first 30 days after infection but remained higher than controls even after this period. CONCLUSIONS: Individuals hospitalised with COVID-19 have increased risk of incident cardiovascular events across a range of disease and mortality outcomes. The risk of most events is highest in the early postinfection period. Individuals not requiring hospitalisation have increased risk of VTE, but not of other cardiovascular-specific outcomes.

18.
PLoS One ; 17(6): e0267392, 2022.
Article in English | MEDLINE | ID: covidwho-2021694

ABSTRACT

INTRODUCTION: There have been more than 425 million COVID-19 infections worldwide. Post-COVID illness has become a common, disabling complication of this infection. Therefore, it presents a significant challenge to global public health and economic activity. METHODS: Comprehensive clinical assessment (symptoms, WHO performance status, cognitive testing, CPET, lung function, high-resolution CT chest, CT pulmonary angiogram and cardiac MRI) of previously well, working-age adults in full-time employment was conducted to identify physical and neurocognitive deficits in those with severe or prolonged COVID-19 illness. RESULTS: 205 consecutive patients, age 39 (IQR30.0-46.7) years, 84% male, were assessed 24 (IQR17.1-34.0) weeks after acute illness. 69% reported ≥3 ongoing symptoms. Shortness of breath (61%), fatigue (54%) and cognitive problems (47%) were the most frequent symptoms, 17% met criteria for anxiety and 24% depression. 67% remained below pre-COVID performance status at 24 weeks. One third of lung function tests were abnormal, (reduced lung volume and transfer factor, and obstructive spirometry). HRCT lung was clinically indicated in <50% of patients, with COVID-associated pathology found in 25% of these. In all but three HRCTs, changes were graded 'mild'. There was an extremely low incidence of pulmonary thromboembolic disease or significant cardiac pathology. A specific, focal cognitive deficit was identified in those with ongoing symptoms of fatigue, poor concentration, poor memory, low mood, and anxiety. This was notably more common in patients managed in the community during their acute illness. CONCLUSION: Despite low rates of residual cardiopulmonary pathology, in this cohort, with low rates of premorbid illness, there is a high burden of symptoms and failure to regain pre-COVID performance 6-months after acute illness. Cognitive assessment identified a specific deficit of the same magnitude as intoxication at the UK drink driving limit or the deterioration expected with 10 years ageing, which appears to contribute significantly to the symptomatology of long-COVID.


Subject(s)
COVID-19 , Acute Disease , Adult , COVID-19/complications , Fatigue/etiology , Female , Humans , Lung , Male , Post-Acute COVID-19 Syndrome
20.
Int J Behav Nutr Phys Act ; 19(1): 94, 2022 07 28.
Article in English | MEDLINE | ID: covidwho-1962853

ABSTRACT

BACKGROUND: The number of individuals recovering from severe COVID-19 is increasing rapidly. However, little is known about physical behaviours that make up the 24-h cycle within these individuals. This study aimed to describe physical behaviours following hospital admission for COVID-19 at eight months post-discharge including associations with acute illness severity and ongoing symptoms. METHODS: One thousand seventy-seven patients with COVID-19 discharged from hospital between March and November 2020 were recruited. Using a 14-day wear protocol, wrist-worn accelerometers were sent to participants after a five-month follow-up assessment. Acute illness severity was assessed by the WHO clinical progression scale, and the severity of ongoing symptoms was assessed using four previously reported data-driven clinical recovery clusters. Two existing control populations of office workers and individuals with type 2 diabetes were comparators. RESULTS: Valid accelerometer data from 253 women and 462 men were included. Women engaged in a mean ± SD of 14.9 ± 14.7 min/day of moderate-to-vigorous physical activity (MVPA), with 12.1 ± 1.7 h/day spent inactive and 7.2 ± 1.1 h/day asleep. The values for men were 21.0 ± 22.3 and 12.6 ± 1.7 h /day and 6.9 ± 1.1 h/day, respectively. Over 60% of women and men did not have any days containing a 30-min bout of MVPA. Variability in sleep timing was approximately 2 h in men and women. More severe acute illness was associated with lower total activity and MVPA in recovery. The very severe recovery cluster was associated with fewer days/week containing continuous bouts of MVPA, longer total sleep time, and higher variability in sleep timing. Patients post-hospitalisation with COVID-19 had lower levels of physical activity, greater sleep variability, and lower sleep efficiency than a similarly aged cohort of office workers or those with type 2 diabetes. CONCLUSIONS: Those recovering from a hospital admission for COVID-19 have low levels of physical activity and disrupted patterns of sleep several months after discharge. Our comparative cohorts indicate that the long-term impact of COVID-19 on physical behaviours is significant.


Subject(s)
COVID-19 , Diabetes Mellitus, Type 2 , Accelerometry/methods , Aftercare , Aged , Diabetes Mellitus, Type 2/therapy , Exercise , Female , Hospitalization , Hospitals , Humans , Male , Patient Discharge , Sleep
SELECTION OF CITATIONS
SEARCH DETAIL